Simulation of shear wave propagation in a soft medium using a pseudospectral time domain method

2009 Journal of the Acoustical Society of America 126;4 (2108-2116)

Elastography applications require the use of efficient models to simulate the propagation of shear waves in soft media such as human tissues. These models are needed to improve understanding of the measured displacement field, to reconstruct the viscoelasticity of heterogeneous tissues, and to test inversion algorithms. This paper reports a numerical model based on a pseudospectral time domain method developed to simulate shear and compression wave propagation in an axisymmetric heterogeneous viscoelastic medium. This model was adapted to the study of soft tissues where the ratio between the compression and the shear wave velocity was about a thousand and validated in the homogeneous situation by comparison with an analytical model based on elastodynamic Green's functions. Displacements obtained experimentally using transient elastography are presented, compared with simulation results, and discussed.

Pubmed : 19813820